Source code for feast.infra.offline_stores.bigquery

import contextlib
import uuid
from datetime import date, datetime, timedelta
from typing import Callable, ContextManager, Dict, Iterator, List, Optional, Union

import numpy as np
import pandas as pd
import pyarrow
import pyarrow.parquet
from pydantic import StrictStr
from pydantic.typing import Literal
from tenacity import Retrying, retry_if_exception_type, stop_after_delay, wait_fixed

from feast import flags_helper
from feast.data_source import DataSource
from feast.errors import (
from feast.feature_view import DUMMY_ENTITY_ID, DUMMY_ENTITY_VAL, FeatureView
from feast.infra.offline_stores import offline_utils
from feast.infra.offline_stores.offline_store import OfflineStore, RetrievalJob
from feast.on_demand_feature_view import OnDemandFeatureView
from feast.registry import Registry
from feast.repo_config import FeastConfigBaseModel, RepoConfig

from .bigquery_source import BigQuerySource

    from google.api_core.exceptions import NotFound
    from google.auth.exceptions import DefaultCredentialsError
    from import bigquery
    from import Client

except ImportError as e:
    from feast.errors import FeastExtrasDependencyImportError

    raise FeastExtrasDependencyImportError("gcp", str(e))

[docs]class BigQueryOfflineStoreConfig(FeastConfigBaseModel): """ Offline store config for GCP BigQuery """ type: Literal["bigquery"] = "bigquery" """ Offline store type selector""" dataset: StrictStr = "feast" """ (optional) BigQuery Dataset name for temporary tables """ project_id: Optional[StrictStr] = None """ (optional) GCP project name used for the BigQuery offline store """ location: Optional[StrictStr] = None """ (optional) GCP location name used for the BigQuery offline store. Examples of location names include ``US``, ``EU``, ``us-central1``, ``us-west4``. If a location is not specified, the location defaults to the ``US`` multi-regional location. For more information on BigQuery data locations see: """
[docs]class BigQueryOfflineStore(OfflineStore):
[docs] @staticmethod def pull_latest_from_table_or_query( config: RepoConfig, data_source: DataSource, join_key_columns: List[str], feature_name_columns: List[str], event_timestamp_column: str, created_timestamp_column: Optional[str], start_date: datetime, end_date: datetime, ) -> RetrievalJob: assert isinstance(data_source, BigQuerySource) from_expression = data_source.get_table_query_string() partition_by_join_key_string = ", ".join(join_key_columns) if partition_by_join_key_string != "": partition_by_join_key_string = ( "PARTITION BY " + partition_by_join_key_string ) timestamps = [event_timestamp_column] if created_timestamp_column: timestamps.append(created_timestamp_column) timestamp_desc_string = " DESC, ".join(timestamps) + " DESC" field_string = ", ".join(join_key_columns + feature_name_columns + timestamps) client = _get_bigquery_client( project=config.offline_store.project_id, location=config.offline_store.location, ) query = f""" SELECT {field_string} {f", {repr(DUMMY_ENTITY_VAL)} AS {DUMMY_ENTITY_ID}" if not join_key_columns else ""} FROM ( SELECT {field_string}, ROW_NUMBER() OVER({partition_by_join_key_string} ORDER BY {timestamp_desc_string}) AS _feast_row FROM {from_expression} WHERE {event_timestamp_column} BETWEEN TIMESTAMP('{start_date}') AND TIMESTAMP('{end_date}') ) WHERE _feast_row = 1 """ # When materializing a single feature view, we don't need full feature names. On demand transforms aren't materialized return BigQueryRetrievalJob( query=query, client=client, config=config, full_feature_names=False, on_demand_feature_views=None, )
[docs] @staticmethod def get_historical_features( config: RepoConfig, feature_views: List[FeatureView], feature_refs: List[str], entity_df: Union[pd.DataFrame, str], registry: Registry, project: str, full_feature_names: bool = False, ) -> RetrievalJob: # TODO: Add entity_df validation in order to fail before interacting with BigQuery assert isinstance(config.offline_store, BigQueryOfflineStoreConfig) client = _get_bigquery_client( project=config.offline_store.project_id, location=config.offline_store.location, ) assert isinstance(config.offline_store, BigQueryOfflineStoreConfig) table_reference = _get_table_reference_for_new_entity( client, client.project, config.offline_store.dataset ) @contextlib.contextmanager def query_generator() -> Iterator[str]: entity_schema = _upload_entity_df_and_get_entity_schema( client=client, table_name=table_reference, entity_df=entity_df, ) entity_df_event_timestamp_col = offline_utils.infer_event_timestamp_from_entity_df( entity_schema ) expected_join_keys = offline_utils.get_expected_join_keys( project, feature_views, registry ) offline_utils.assert_expected_columns_in_entity_df( entity_schema, expected_join_keys, entity_df_event_timestamp_col ) # Build a query context containing all information required to template the BigQuery SQL query query_context = offline_utils.get_feature_view_query_context( feature_refs, feature_views, registry, project, ) # Generate the BigQuery SQL query from the query context query = offline_utils.build_point_in_time_query( query_context, left_table_query_string=table_reference, entity_df_event_timestamp_col=entity_df_event_timestamp_col, query_template=MULTIPLE_FEATURE_VIEW_POINT_IN_TIME_JOIN, full_feature_names=full_feature_names, ) try: yield query finally: # Asynchronously clean up the uploaded Bigquery table, which will expire # if cleanup fails client.delete_table(table=table_reference, not_found_ok=True) return BigQueryRetrievalJob( query=query_generator, client=client, config=config, full_feature_names=full_feature_names, on_demand_feature_views=OnDemandFeatureView.get_requested_odfvs( feature_refs, project, registry ), )
[docs]class BigQueryRetrievalJob(RetrievalJob): def __init__( self, query: Union[str, Callable[[], ContextManager[str]]], client: bigquery.Client, config: RepoConfig, full_feature_names: bool, on_demand_feature_views: Optional[List[OnDemandFeatureView]], ): if not isinstance(query, str): self._query_generator = query else: @contextlib.contextmanager def query_generator() -> Iterator[str]: assert isinstance(query, str) yield query self._query_generator = query_generator self.client = client self.config = config self._full_feature_names = full_feature_names self._on_demand_feature_views = on_demand_feature_views @property def full_feature_names(self) -> bool: return self._full_feature_names @property def on_demand_feature_views(self) -> Optional[List[OnDemandFeatureView]]: return self._on_demand_feature_views def _to_df_internal(self) -> pd.DataFrame: with self._query_generator() as query: df = self.client.query(query).to_dataframe(create_bqstorage_client=True) return df
[docs] def to_sql(self) -> str: """ Returns the SQL query that will be executed in BigQuery to build the historical feature table. """ with self._query_generator() as query: return query
[docs] def to_bigquery( self, job_config: bigquery.QueryJobConfig = None, timeout: int = 1800, retry_cadence: int = 10, ) -> Optional[str]: """ Triggers the execution of a historical feature retrieval query and exports the results to a BigQuery table. Runs for a maximum amount of time specified by the timeout parameter (defaulting to 30 minutes). Args: job_config: An optional bigquery.QueryJobConfig to specify options like destination table, dry run, etc. timeout: An optional number of seconds for setting the time limit of the QueryJob. retry_cadence: An optional number of seconds for setting how long the job should checked for completion. Returns: Returns the destination table name or returns None if job_config.dry_run is True. """ if not job_config: today ="%Y%m%d") rand_id = str(uuid.uuid4())[:7] path = f"{self.client.project}.{self.config.offline_store.dataset}.historical_{today}_{rand_id}" job_config = bigquery.QueryJobConfig(destination=path) if not job_config.dry_run and self.on_demand_feature_views: job = self.client.load_table_from_dataframe( self.to_df(), job_config.destination ) job.result() print(f"Done writing to '{job_config.destination}'.") return str(job_config.destination) with self._query_generator() as query: bq_job = self.client.query(query, job_config=job_config) if job_config.dry_run: print( "This query will process {} bytes.".format( bq_job.total_bytes_processed ) ) return None block_until_done(client=self.client, bq_job=bq_job, timeout=timeout) print(f"Done writing to '{job_config.destination}'.") return str(job_config.destination)
def _to_arrow_internal(self) -> pyarrow.Table: with self._query_generator() as query: return self.client.query(query).to_arrow()
[docs]def block_until_done( client: Client, bq_job: Union[bigquery.job.query.QueryJob, bigquery.job.load.LoadJob], timeout: int = 1800, retry_cadence: float = 1, ): """ Waits for bq_job to finish running, up to a maximum amount of time specified by the timeout parameter (defaulting to 30 minutes). Args: client: A bigquery.client.Client to monitor the bq_job. bq_job: The bigquery.job.QueryJob that blocks until done runnning. timeout: An optional number of seconds for setting the time limit of the job. retry_cadence: An optional number of seconds for setting how long the job should checked for completion. Raises: BigQueryJobStillRunning exception if the function has blocked longer than 30 minutes. BigQueryJobCancelled exception to signify when that the job has been cancelled (i.e. from timeout or KeyboardInterrupt). """ # For test environments, retry more aggressively if flags_helper.is_test(): retry_cadence = 0.1 def _wait_until_done(bq_job): if client.get_job(bq_job).state in ["PENDING", "RUNNING"]: raise BigQueryJobStillRunning(job_id=bq_job.job_id) try: retryer = Retrying( wait=wait_fixed(retry_cadence), stop=stop_after_delay(timeout), retry=retry_if_exception_type(BigQueryJobStillRunning), reraise=True, ) retryer(_wait_until_done, bq_job) finally: if client.get_job(bq_job).state in ["PENDING", "RUNNING"]: client.cancel_job(bq_job) raise BigQueryJobCancelled(job_id=bq_job.job_id) if bq_job.exception(): raise bq_job.exception()
def _get_table_reference_for_new_entity( client: Client, dataset_project: str, dataset_name: str ) -> str: """Gets the table_id for the new entity to be uploaded.""" # First create the BigQuery dataset if it doesn't exist dataset = bigquery.Dataset(f"{dataset_project}.{dataset_name}") dataset.location = "US" try: client.get_dataset(dataset) except NotFound: # Only create the dataset if it does not exist client.create_dataset(dataset, exists_ok=True) table_name = offline_utils.get_temp_entity_table_name() return f"{dataset_project}.{dataset_name}.{table_name}" def _upload_entity_df_and_get_entity_schema( client: Client, table_name: str, entity_df: Union[pd.DataFrame, str], ) -> Dict[str, np.dtype]: """Uploads a Pandas entity dataframe into a BigQuery table and returns the resulting table""" if type(entity_df) is str: job = client.query(f"CREATE TABLE {table_name} AS ({entity_df})") block_until_done(client, job) limited_entity_df = ( client.query(f"SELECT * FROM {table_name} LIMIT 1").result().to_dataframe() ) entity_schema = dict(zip(limited_entity_df.columns, limited_entity_df.dtypes)) elif isinstance(entity_df, pd.DataFrame): # Drop the index so that we dont have unnecessary columns entity_df.reset_index(drop=True, inplace=True) job = client.load_table_from_dataframe(entity_df, table_name) block_until_done(client, job) entity_schema = dict(zip(entity_df.columns, entity_df.dtypes)) else: raise InvalidEntityType(type(entity_df)) # Ensure that the table expires after some time table = client.get_table(table=table_name) table.expires = datetime.utcnow() + timedelta(minutes=30) client.update_table(table, ["expires"]) return entity_schema def _get_bigquery_client(project: Optional[str] = None, location: Optional[str] = None): try: client = bigquery.Client(project=project, location=location) except DefaultCredentialsError as e: raise FeastProviderLoginError( str(e) + '\nIt may be necessary to run "gcloud auth application-default login" if you would like to use your ' "local Google Cloud account" ) except EnvironmentError as e: raise FeastProviderLoginError( "GCP error: " + str(e) + "\nIt may be necessary to set a default GCP project by running " '"gcloud config set project your-project"' ) return client # TODO: Optimizations # * Use GENERATE_UUID() instead of ROW_NUMBER(), or join on entity columns directly # * Precompute ROW_NUMBER() so that it doesn't have to be recomputed for every query on entity_dataframe # * Create temporary tables instead of keeping all tables in memory # Note: Keep this in sync with sdk/python/feast/infra/offline_stores/ MULTIPLE_FEATURE_VIEW_POINT_IN_TIME_JOIN = """ /* Compute a deterministic hash for the `left_table_query_string` that will be used throughout all the logic as the field to GROUP BY the data */ WITH entity_dataframe AS ( SELECT *, {{entity_df_event_timestamp_col}} AS entity_timestamp {% for featureview in featureviews %} {% if featureview.entities %} ,CONCAT( {% for entity in featureview.entities %} CAST({{entity}} AS STRING), {% endfor %} CAST({{entity_df_event_timestamp_col}} AS STRING) ) AS {{}}__entity_row_unique_id {% else %} ,CAST({{entity_df_event_timestamp_col}} AS STRING) AS {{}}__entity_row_unique_id {% endif %} {% endfor %} FROM {{ left_table_query_string }} ), {% for featureview in featureviews %} {{ }}__entity_dataframe AS ( SELECT {{ featureview.entities | join(', ')}}{% if featureview.entities %},{% else %}{% endif %} entity_timestamp, {{}}__entity_row_unique_id FROM entity_dataframe GROUP BY {{ featureview.entities | join(', ')}}{% if featureview.entities %},{% else %}{% endif %} entity_timestamp, {{}}__entity_row_unique_id ), /* This query template performs the point-in-time correctness join for a single feature set table to the provided entity table. 1. We first join the current feature_view to the entity dataframe that has been passed. This JOIN has the following logic: - For each row of the entity dataframe, only keep the rows where the `event_timestamp_column` is less than the one provided in the entity dataframe - If there a TTL for the current feature_view, also keep the rows where the `event_timestamp_column` is higher the the one provided minus the TTL - For each row, Join on the entity key and retrieve the `entity_row_unique_id` that has been computed previously The output of this CTE will contain all the necessary information and already filtered out most of the data that is not relevant. */ {{ }}__subquery AS ( SELECT {{ featureview.event_timestamp_column }} as event_timestamp, {{ featureview.created_timestamp_column ~ ' as created_timestamp,' if featureview.created_timestamp_column else '' }} {{ featureview.entity_selections | join(', ')}}{% if featureview.entity_selections %},{% else %}{% endif %} {% for feature in featureview.features %} {{ feature }} as {% if full_feature_names %}{{ }}__{{feature}}{% else %}{{ feature }}{% endif %}{% if loop.last %}{% else %}, {% endif %} {% endfor %} FROM {{ featureview.table_subquery }} WHERE {{ featureview.event_timestamp_column }} <= (SELECT MAX(entity_timestamp) FROM entity_dataframe) {% if featureview.ttl == 0 %}{% else %} AND {{ featureview.event_timestamp_column }} >= Timestamp_sub((SELECT MIN(entity_timestamp) FROM entity_dataframe), interval {{ featureview.ttl }} second) {% endif %} ), {{ }}__base AS ( SELECT subquery.*, entity_dataframe.entity_timestamp, entity_dataframe.{{}}__entity_row_unique_id FROM {{ }}__subquery AS subquery INNER JOIN {{ }}__entity_dataframe AS entity_dataframe ON TRUE AND subquery.event_timestamp <= entity_dataframe.entity_timestamp {% if featureview.ttl == 0 %}{% else %} AND subquery.event_timestamp >= Timestamp_sub(entity_dataframe.entity_timestamp, interval {{ featureview.ttl }} second) {% endif %} {% for entity in featureview.entities %} AND subquery.{{ entity }} = entity_dataframe.{{ entity }} {% endfor %} ), /* 2. If the `created_timestamp_column` has been set, we need to deduplicate the data first. This is done by calculating the `MAX(created_at_timestamp)` for each event_timestamp. We then join the data on the next CTE */ {% if featureview.created_timestamp_column %} {{ }}__dedup AS ( SELECT {{}}__entity_row_unique_id, event_timestamp, MAX(created_timestamp) as created_timestamp FROM {{ }}__base GROUP BY {{}}__entity_row_unique_id, event_timestamp ), {% endif %} /* 3. The data has been filtered during the first CTE "*__base" Thus we only need to compute the latest timestamp of each feature. */ {{ }}__latest AS ( SELECT * EXCEPT(row_number) FROM ( SELECT *, ROW_NUMBER() OVER( PARTITION BY {{}}__entity_row_unique_id ORDER BY event_timestamp DESC{% if featureview.created_timestamp_column %},created_timestamp DESC{% endif %} ) AS row_number, FROM {{ }}__base {% if featureview.created_timestamp_column %} INNER JOIN {{ }}__dedup USING ({{}}__entity_row_unique_id, event_timestamp, created_timestamp) {% endif %} ) WHERE row_number = 1 ), /* 4. Once we know the latest value of each feature for a given timestamp, we can join again the data back to the original "base" dataset */ {{ }}__cleaned AS ( SELECT base.* FROM {{ }}__base as base INNER JOIN {{ }}__latest USING( {{}}__entity_row_unique_id, event_timestamp {% if featureview.created_timestamp_column %} ,created_timestamp {% endif %} ) ){% if loop.last %}{% else %}, {% endif %} {% endfor %} /* Joins the outputs of multiple time travel joins to a single table. The entity_dataframe dataset being our source of truth here. */ SELECT * EXCEPT(entity_timestamp, {% for featureview in featureviews %} {{}}__entity_row_unique_id{% if loop.last %}{% else %},{% endif %}{% endfor %}) FROM entity_dataframe {% for featureview in featureviews %} LEFT JOIN ( SELECT {{}}__entity_row_unique_id {% for feature in featureview.features %} ,{% if full_feature_names %}{{ }}__{{feature}}{% else %}{{ feature }}{% endif %} {% endfor %} FROM {{ }}__cleaned ) USING ({{}}__entity_row_unique_id) {% endfor %} """